

MODULE BIOMECHANICS FOUNDATIONS

Didactic Unit A: MOVEMENTS

CLASS INDEX

- Understanding differences between Kinematics and Kinetics variables
- Understanding the concept of acceleration

Class workshop
 Movement planes

Understanding differences between Kinematics and Kinetics

Kinematics and Kinetics variables

Kinematics

Kinematics describes the motion of a body.

how a body moves.

Kinetics

 Kinetics describes the forces that act over a body to produce movement.

Kinetics answer the questions about **Why** a body moves.

https://ocw.mit.edu/courses/physics/8-01sc-classical-mechanics-fall-2016/week-1-kinematics/week-1-introduction/

The following variables related to the movement of a body belong to kinematic or kinetic analysis? Energy, acceleration, power, ground reaction force, velocity, position, work, angle

Understanding the concept of acceleration

ACCELERATION AND VELOCITY

 Acceleration is the rate of change of velocity. It means that in the case that the velocity does not change, the acceleration is equal to zero.

Are you sure that you have understood the relationship between acceleration and velocity?

Understanding the concept of acceleration

ACCELERATION AND VELOCITY

Match the following statements:

	High velocity, low acceleration	High velocity, high acceleration	Low velocity, low acceleration	Low velocity, high acceleration
A car accelerating at maximum after red traffic lights				
A car driving by a school area at a low, almost constant velocity				
A car at high velocity and try to overtake another car increasing its velocity				
A car at a stable and high velocity				

Activity extracted from: https://es.khanacademy.org/science/physics/one-dimensional-motion/acceleration-tutorial/a/acceleration-article?modal=1

Understanding the concept of acceleration

ACCELERATION AND VELOCITY

Match the following statements:

	High velocity, low acceleration	High velocity, high acceleration	Low velocity, low acceleration	Low velocity, high acceleration
A car accelerating at maximum after red traffic lights				X
A car driving by a school area at a low, almost constant velocity			X	
A car at high velocity and try to overtake another car increasing its velocity		X		
A car at a stable and high velocity	X			

Activity extracted from: https://es.khanacademy.org/science/physics/one-dimensional-motion/acceleration-tutorial/a/acceleration-article?modal=1

CLASS INDEX

Understanding the concept of acceleration

Class workshop
 Movement planes

Movement planes

Objective:

 To determine the movements planes and axis of the three movements proposed.

Instructions:

- Forming working groups.
- One of the students plays the role of an anatomical model.
- First movement: From position 1, perform shoulder internal-external rotations without separating the elbow from the trunk.
- Second movement: From position 1, perform forearm pronation and supination.
- Third movement: From position 2, perform shoulder internal-external rotations.

Movements planes

Position 1

Position 2

Movements planes

Solution:

First movement:

Plane: Horizontal

Axis: Lateral and Anteroposterior

Second movement:

Plane: Frontal

Axis: Lateral and Vertical

Third movement:

Plane: Sagittal

Axis: Vertical and Anteroposterior

The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

